Kanazawa University Research: Vapor Drives a Liquid-solid Transition in a Molecular System

Tomoki Ogoshi from Kanazawa University in Japan and colleagues studied pillar[n]arene molecules — pillar-shaped molecules that were first reported by their research group — to which functional groups can be added to modify their physical properties. Introducing 12 n-hexyl (C6H13) chains into the molecules transform the system into a room-temperature structural liquid, that is, a system with a certain degree of order at the nanoscale but without a periodic structure (Figure 1). The liquid solidifies when exposed to a guest vapor, whose molecules replace the n-hexyl substituents in the cavities of the pillar-shaped molecules. At the same time, the substituents located outside the cavities crystallize. The result is that, on a timescale of a few seconds, the system solidifies and the transparent liquid changes to a turbid solid.
Japan, (informazione.it - comunicati stampa - information technology)

Tomoki Ogoshi from Kanazawa University in Japan and colleagues studied pillar[n]arene molecules — pillar-shaped molecules that were first reported by their research group — to which functional groups can be added to modify their physical properties. Introducing 12 n-hexyl (C6H13) chains into the molecules transform the system into a room-temperature structural liquid, that is, a system with a certain degree of order at the nanoscale but without a periodic structure (Figure 1). The liquid solidifies when exposed to a guest vapor, whose molecules replace the n-hexyl substituents in the cavities of the pillar-shaped molecules. At the same time, the substituents located outside the cavities crystallize. The result is that, on a timescale of a few seconds, the system solidifies and the transparent liquid changes to a turbid solid.

As the competitive guest vapor the authors used cyclohexane, because it fits into the cavities of the pillar-shaped molecules and is easy to remove by heating the sample under reduced pressure, a process that results in the molecular system going back to the liquid state. The adsorption and desorption processes are characterized by nuclear magnetic resonance measurements, whereas the structure of the system is studied by X-ray diffraction.

The authors also investigated the uptake of other organic vapors by the structural liquid, observing that exposure to molecules that could be absorbed in the pores of the pillar-shaped molecules always resulted in a transition to a solid phase, whereas the phase transition was not observed for exposure to gases that had a low uptake by the structural liquid.

This system can be used as a detector of alkane vapors, an unusual device. "Because of the vapor selectivity, we postulate the vapor-induced state change can be applied for new vapour detection systems," comment the authors. "Another application is adhesion materials using the guest vapor-induced state change."

Background

Host-guest chemistry: supramolecular chemistry is a branch of chemistry that studies chemical systems composed by several molecules, describing their interaction, which are essential to many biological processes. Host-guest interactions are one example: this is the type of interaction at work when a host molecule forms a chemical compound with a guest molecule or ion without the involvement of covalent bonds. This type of interaction can be harnessed, for example, in drug delivery systems in which the presence of the host increases the solubility and availability of the drug (the guest).

Pillararenes: macrocycle molecules that take their name from their pillar shape. The cavities in these molecules can host electron-poor molecules. Some of these molecules have potential for biomedical applications, but also for gas absorption, ionic liquids and organic light-emitting materials.

Reference:

Tomoki Ogoshi, Keisuke Maruyama, Yuma Sakatsume, Takahiro Kakuta, Tada-aki Yamagishi, Takahiro Ichikawa, and Motohiro Mizuno Guest Vapor-Induced State Change of Structural Liquid Pillar[6]arene. J. Am. Chem. Soc.2019141 (2), pp 785–789

Kanazawa University Research: Vapor Drives a Liquid-solid Transition in a Molecular System

About Nano Life Science Institute (WPI-NanoLSI)

https://nanolsi.kanazawa-u.ac.jp/en/

Nano Life Science Institute (NanoLSI), Kanazawa University is a research center established in 2017 as part of the World Premier International Research Center Initiative of the Ministry of Education, Culture, Sports, Science and Technology. The objective of this initiative is to form world-tier research centers. NanoLSI combines the foremost knowledge of bio-scanning probe microscopy to establish 'nano-endoscopic techniques' to directly image, analyze, and manipulate biomolecules for insights into mechanisms governing life phenomena such as diseases.

About Kanazawa University

http://www.kanazawa-u.ac.jp/e/

As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 17 schools offering courses in subjects that include medicine, computer engineering, and humanities.

The University is located on the coast of the Sea of Japan in Kanazawa – a city rich in history and culture. The city of Kanazawa has a highly respected intellectual profile since the time of the fiefdom (1598-1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 10,200 students including 600 from overseas.

Further information
Hiroe Yoneda
Vice Director of Public Affairs
WPI Nano Life Science Institute (WPI-NanoLSI)
Kanazawa University
Kakuma-machi, Kanazawa 920-1192, Japan
Email: [email protected] 
Tel: +81(76)234-4550

Photo: https://mma.prnewswire.com/media/840406/Kanazawa_University_Research.jpg

Ufficio Stampa
 PR Newswire (Leggi tutti i comunicati)
209 - 215 Blackfriars Road
LONDON United Kingdom
Allegati
Slide ShowSlide Show
Non disponibili